
JOURNAL OF MATERIALS SCIENCE 27 (1992) 1428-1434 
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The role of adhesion in rubber modified polymers was determined using finite element stress 
analysis. Adhesion between the two phases was found to be unimportant in terms of the 
stress concentrations in the matrix phase, even near the polymer-rubber interface. By consid- 
ering zero adhesion and perfect adhesion limits, bounds on the interfacial behavior have been 
established. The stress analysis predicts elastic properties such as modulus, Poisson's ratio and 
yield strength. A comparison is made to experimental results on a thermoplastic/elastomer 
blend. 

1. I n t r o d u c t i o n  
The impact modification of polymers is possible 
through incorporation of rubbery phase domains into 
an otherwise brittle polymer matrix. High-impact 
polystyrene (HIPS), acrylonitrile-butadiene-styrene 
(ABS), and modified epoxies are well known and 
important materials that employ this technique. In- 
creases in the toughness of glassy polymers with the 
addition of rubber particles is believed to be due to the 
rubber particles ability to induce wide-spread energy- 
absorbing deformation processes, such as crazing and 
shear yielding, in the matrix material during fracture 
[1]. Researchers have shown that rubber inclusions 
cause a local stress magnification in the matrix mater- 
ial immediately surrounding the inclusion [-2, 3]. This 
local stress magnification is believed to initiate crazing 
and shear yielding. Goodier [2] provided an analyt- 
ical solution for the internal stresses surrounding a 
single inclusion in an infinite matrix subjected to a 
uniaxial tension. Broutman and Panizza [3] later 
developed a numerical method using finite element 
analysis to account for interactions between particles 
in a multi-particle composite material. Liu and 
Nauman [-4] found the exact solution for the stress 
distribution within the inclusion for the single particle 
problem. In all the previous Work [2-8] the assump- 
tion of perfect adhesion (continuity of displacements) 
between the inclusion aiad the matrix has been used. 
Much debate exists in the literature over the import- 
ance of adhesion and the degree of adhesion between 
the rubber and polymer phases to the final composite 
properties, especially impact resistance [-1, 4, 9-14]. In 
this work, we examine the effect of interracial bonding 
on the composite behaviour by eliminating the perfect 
adhesion assumption. Instead, we consider the case 
where the matrix and rubber act as two separate 
entities that have no interfacial forces holding them 
together. We would expect a real composite system to 
behave intermediately to these two extremes. 

Here we consider the effect of inclusion modulus 
and inclusion volume fraction using the two different 
interface conditions. In addition, the internal stress 
analysis is used to predict elastic properties such as 
modulus, Poisson's ratio and yield strength. These 
results are compared to the experimental findings of 
Furno and Nauman [15]. 

2. Finite element stress analysis 
The application of the finite element method to stress 
analysis has been well documented [,16,17]. For 
completeness, a brief description of the method will be 
given here. A structure is first divided into a set of 
discrete elements. The boundaries of the elements are 
defined as straight lines between nodal points. These 
nodes are common points which interconnect the 
elements in the discretized system. When the structure 
is subjected to a given set of boundary conditions, the 
displacement at each node and the stresses in each 
element can be evaluated by solving the equilibrium 
equations along with the continuity relations between 
the elements. 

Following the work of Broutman and Panizza [,3], 
the analysis was performed in cylindrical coordinates 
on an axisymmetric solid. The model system consists 
of a sphere embedded in a cylinder which has periodic 
boundary conditions at its outer surface. As recog- 
nized by the original workers, this model does not 
accurately define an actual repetitive unit. It does, 
however, provide an accurate description with respect 
to the volume fraction of modifier and the interparticle 
spacing. Agarwal and Broutman [18] compared their 
results with those from a full three-dimensional ana- 
lysis for an alumina-filled glass. They concluded that 
the small differences between the two approaches did 
not warrant the added expense and complexity of the 
three-dimensional analysis. 

The finite element package ABAQUS was used to 
solve this composite stress analysis problem. Boyce 
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Figure 1 Finite element grid (r2/rl) = 0.5 = 8.3% rubber. 

et al. [8] previously used the same package to analyse 
the internal stresses of composites containing layered 
spherical inclusions and thermal residual stresses. One 
of the finite element grids used in the present work is 
given in Fig. 1. The grid shown is for the case where 
the composite contains an 8.3% volume fraction of 
modifier (rz /r  I = 0.5). The volume fraction and inter- 
particle spacing in the model are given by 

volume fraction = 2( rz / r03  (1) 

interparticle spacing = 2(r I - -  r2) (2) 

where r~, the cell length, and r2, the particle radius, are 
depicted in Fig. 1. 

Whereas previous workers considered perfect bond- 
ing to exist between the inclusion and the matrix, we 
also considered the case where there is no adhesion 
between the two phases. In the finite element method, 
this no adhesion case was modelled by supposing that 
a gap interface exists between the outer elements of the 
inclusion and the adjacent matrix elements. The width 
of the gap was reduced until there was no longer an 
effect on the stress analysis results. In essence, a 
numerically infinitesimal gap was used to model the 
lack of adhesive forces between the inclusion and 
matrix. As a result, only compressive forces and not 
tensile or shear forces are transmitted from the matrix 
to the inclusion. In contrast, the perfect adhesion 
assumption provides perfect transmission of tensile 
and shear forces as well as compressive forces. 

The boundary conditions and solution procedure 
used follows that of Broutman and Panizza. The 
region ABCD as shown in Fig. 1 is subjected to a 
uniaxial tension in the z-direction, only. This tension 
results in a stretching of the cell in the z-direction with 
a corresponding contraction in the r-direction related 
to the Poisson's ratio of the composite. By symmetry, 
the shear stress, ~,~, on the boundary must be zero, 
thus sides AB and BC remain parallel to their original 
position while AD and DC remain fixed. In addition, 
no external force is acting on the boundary BC so that 

f o r d z  = (3) 0 
BC 

These boundary conditions are satisfied by the super- 
position of two separate stress analysis problems. In 
the first problem, the cell is given zero displacements 
on all boundaries except for the top (AB) which is 
subjected to a unit (positive) displacement in the 
z-direction. The second stress and displacement dis- 
tribution is calculated subject to zero displacements 
on all sides except for, this time, the right side (BC) 
which is subjected to a unit normal displacement 
(r-direction). The two stress and displacement dis- 
tributions are then superimposed by 

(3" = 01 -~- ] ;0  2 (4) 

u = u 1 + ku2 (5) 

where k is evaluated such that boundary condition 3 is 
satisfied 

fBC 
SO 

(orl + kor~)dz = IBCI(6, . ,  + k6,.~) = 0 (6) 

\ 0 r 2  , /BC 

The necessity for calculating and superimposing two 
separate distributions is due to the fact that the com- 
posite Poisson's ratio is not known a priori, but 
instead must be evaluated. Equations 3, 6 and 7 allow 
for the evaluation of the Poisson's ratio as 

v = Ikl (8) 

The result of this analysis is the stress and displace- 
ment distributions throughout the matrix and inclu- 
sion for a composite material that is put under 
a uniaxial tension in the z-direction of magnitude 
equal to 

f o~ dA 
(rz = A 

A (9) 

where 

fA z dA= 2 fl o z r d r  

= r: ~ ( r /2 - r~_ l )oz  (10) 
i = 1  

and where A is the top (circular) surface of the cylin- 
drical axisymmetric cell. 

The stress distribution found in this manner is in 
cylindrical coordinates. The stress components can be 
transformed into the more familiar spherical coordin- 
ate system using the following transformations 

Oy ~ O" 0 

= O z COS20  -]- 

(Y x = 

or sing0 - zrz sin20 (hoop stress) 
(11) 

(~rr 

Oz s in20  + o ~ c o s ; 0  + l:~z s i n 2 0  

(radial stress) (t 2) 

(i** = (i, (tangential stress) (13) 
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T, xy ~ TrO 

= zr= cos20 - �89 - o=) sin20 (shear stress) 
(14)  

These components of stress can then be used to calcu- 
late the Mise's equivalent stress within the material. 
This equivalent stress gives us a better appreciation of 
the magnitude of the triaxial stresses acting locally in 
the composite which can induce deformation. The 
Mise's equivalent stress is calculated as 

oE = { � 8 9  - 02)  2 + (02 - 03 )  2 

+ (03 - 0,)  2] }1/2 (15) 

where ol ,  02, and 03 are the principal stresses and o~ 
is the Mise's equivalent stress. 

In addition to Poisson's ratio, Broutman and 
Panizza [3] describe how other elastic properties of 
the composite, such as the modulus of elasticity, can 
be calculated from the stress and displacement dis- 
tributions. The modulus of elasticity is defined as 

Cy= 
E - (16) 

where ~= is the strain in the z-direction. The stress, ~=, 
is evaluated from Equations 9 and 10. The strain is 
calculated from the prescribed displacement of the AB 
boundary as 

(Nz)AB ~;: - (17) 
IBcI 

The model calculations also allow prediction of the 
yield strength. The yield strength is the stress at which 
the composite begins to experience widespread, non- 
recoverable yielding. This occurs when entire cross- 
sections of material perpendicular to the applied 
tension begins to yield. The yield strength of the 
unmodified matrix material is given as 0*. Yielding in 
the composite material would thus begin at some 
entire cross-section that first experiences an equivalent 

stress greater than 0*. This first yielding cross-section 
would be defined as the cross-section that has the 
largest minimum stress of all matrix cross-sections. 
From this, we can then calculate the yield strength of 
the composite as 

Fmax( ~ ..... ) 
0* = o*  k (ez)-An ] (18) 

where o . . . .  is the minimum equivalent stress in the 
matrix phase along any given cross-section perpendi- 
cular to the applied tension. 

In order to ensure the accuracy of the finite element 
stress analysis for both the perfect adhesion and no 
adhesion cases, a number of tests were conducted on 
the models. First of all, the analysis using the perfect 
adhesion assumption was used to reproduce the res- 
ults of Broutman and Panizza [-3]. Increases in the 
number of elements were shown to have negligible 
effect on the results of the stress analysis. Two limiting 
cases were also tested. The first case assigned the 
inclusion properties identical to those of the matrix. 
For  the perfect adhesion results, the internal stresses 
were found to be equal throughout the volume (and 
equal to the applied tension) as expected for an isotro- 
pic homogeneous material. In addition, the elastic 
properties calculated from the stress field were equal 
to the matrix properties. The second limiting case used 
for model verification was the limit of decreasing 
inclusion modulus. For very low inclusion moduli, the 
results obtained from the no adhesion model are the 
same as those for perfect adhesion. This result is 
intuitively correct because the limit of decreasing in- 
clusion modulus is a void in the material, and for this 
case the two models should be identical. 

3. R e s u l t s  a n d  d i s c u s s i o n  
We first consider a composite material containing 
8.3% rubber dispersed in a glassy matrix. The corn- 
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Figure  2 Distribution of Mise's equivalent stress in the matrix around a rubber particle (8.3% modifier): (a) perfect adhesion, 
(b) no adhesion. C~E/6~: (1) 0.075, (2) 1.00, (3) 1.25, (4) 1.50, (5) 1.75. 
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Figure 3 Distribution of Mise's equivalent stress in the rubber particle of a rubber-modified polymer (8.3% modifier): (a) perfect adhesion, 
(b) no adhesion. ~E/6,:  (a) (1) 0.010, (2) 0.012, (3) 0.014, (4) 0.016, (5) 0.018; (b) (1) 0.010, (2) 0.020, (3) 0.030, (4) 0.040, (5) 0.050. 

ponent properties are 

polymer: E=400000p.s. i .  (103p.s . i .=6.89Nmm -2) 

v = 0.35 

rubber: E = 3000p.s.i. 

v = 0.48 

These values are similar to those used by Broutman 
and Panizza [3]. Fig. 2 shows contour plots of the 
Mise's equivalent stress in the matrix phase of the 
composite for both the perfect adhesion and no adhe- 
sion cases. The difference in interfacial adhesion has 
virtually no effect on the stress state of the matrix. 
Thus the level of adhesion of a rubber particle to the 
surrounding matrix is unimportant in terms of the 
particle's ability to act as a local stress intensifier and 
to initiate energy-absorbing deformation processes, 
such as crazing and shear yielding. 

This, however, does not mean that a non-bonded 
rubber particle will be an effective impact modifier for 
a polymer. To consider this, we appeal to fracture 
mechanics arguments instead of stress analysis. Specif- 
ically, we need to know if the lack of adhesion pro- 
vides a flaw of critical size which would initiate pre- 
mature fracture instead of energy absorbing deforma- 
tion. One could argue that there exists particles small 
enough or adhesion levels high enough (more re- 
alistically, a combination of the two) such that critical 
flaws are not present to cause premature failure. The 
experimental work of Furno and Nauman [19], 
Nauman et  al. [12] and Wu [9] seems to support this 
idea. 

Contour plots of the Mise's equivalent stress inside 
the spherical rubber inclusion for the perfect adhesion 
and no adhesion case are shown in Fig. 3. Unlike the 
matrix, the rubber phase experiences a vastly different 
stress field depending on the interfacial bonding. The 
difference in stress states of the rubber for the extremes 
in adhesion is due to the forces that are transmitted to 
the particle. For the perfect adhesion case, tensile, 
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Figure 4 Internal stress intensity factor as a function of position 
about a particle of modulus 3 p.s.i. (8.3% modifier). (--)  Perfect 
adhesion, ( - - - )  no adhesion. 
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Figure 5 Internal stress intensity factor as a function of position 
about a particle of modulus 3000 p.s.i. ( ) Perfect adhesion, 
(-  ~ no adhesion. 

compressive, and shear stresses are perfectly transmit- 
ted to the rubber particle whereas in the no adhesion 
case, the particle only receives compressive forces 
applied by the matrix. 

Figs 4-6 show the interfacial stress intensity factor 
within the matrix for both the perfect and no adhe- 
sion cases as a function of Position about the 
rubber particle for inclusion moduli of 3, 3000 and 
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Figure 6 Internal stress intensity factor as a function of position 
about a particle of modulus 3.0 x 106 p.s.i. ( - - )  Perfect adhesion 
( - - - )  no adhesion. 

3.0 • 106 p.s.i, respectively. The other matrix and in- 
clusion properties are the same as those in the pre- 
vious example. The reader should take some caution 
in interpreting these results because the Poisson's 
ratio of the inclusion may be physically unrealistic for 
the given modulus, especially for the high modulus 
inclusion cases. Broutman and Panizza [3], however, 
found that the analysis is insensitive to changes in 
Poisson's ratio. For  extremely low modulus inclu- 
sions, the stress field in the matrix is almost identical 
for both interfacial conditions and converges to the 
solution of a material containing spherical voids. 
Fig. 5 shows that only minor differences exist between 
the perfect adhesion and no adhesion cases in terms of 
stress magnification about the inclusion. This figure is 
most indicative of the situation for a rubber-modified 
thermoplastic. A maximum is predicted by both mo- 
dels at the equator of a particle (0 = 0) perpendicular 
to the applied stress. This result is consistent with the 
experimental observation that crazes, which are re- 
sponsible for increased strength in many rubber modi- 
fied polymers, are initiated at the equator of the 
rubber particle. 

Fig. 6 shows that the perfect adhesion and no 
adhesion assumptions result in vastly different stress 
fields when the inclusion is stiffer than the matrix. Not 
only is the magnitude of the stress magnification 
different for the two models, but so is the location of 
the maximum stress about the particle. The no adhe- 
sion assumption results in a predicted maximum in 
stress to occur at the particle axis parallel to the 
applied stress. In contrast, the maximum equivalent 
stress at r = r 2 for the perfect adhesion model 
occurs approximately 50 ~ from the particle equator. 
Wang et al. [20] found that crazes originated, on 
average, 53 ~ from the inclusion equator when a 
macro-composite consisting of a steel ball (surface- 
treated for good adhesion) in a polystyrene matrix was 
subjected to a uniaxial tension. In addition, Dekkers 
and Heikens [21] found that shear bands formed 
under tension at 0 = 45 ~ about glass beads that were 
well bonded to a polycarbonate matrix. Poorly bon- 
ded beads resulted in dewetting at the poles followed 
by shear band formation between the poles and equ- 
ator. The highest stress concentration predicted using 
the perfect adhesion assumption, however, occurs a 
small distance away from the particle surface at 
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Figure 7 Predicted composite modulus as a function of inclusion 
modulus (8.3% modifier). ( ) Perfect adhesion, (- -) no adhesion. 
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Figure 8 Predicted composite Poisson's ratio as a function of inclu- 
sion modulus (8.3% modifier). (--) Perfect adhesion, ( - - - )  no 
adhesion. 

0 = 90 o. This, perhaps, explains Dekkers and 
Heikens [5] observation of crazes at the poles of glass 
beads that were well bonded to a polystyrene matrix 
and subjected to uniaxial tension. Dekkers and Heik- 
ens [5, 21] results suggest that different mechanisms 
are operative in craze and shear band formation. As 
noted by Wang et  al. [20] and Dekkers and Heikens 
[21] for perfectly adhering hard particles, maxima in 
major principal stress and dilation occur at the poles 
of the inclusion while maxima in major principal 
strain, strain energy density, major principal shear 
stress, and distortion strain energy density (similar to 
Mise's equivalent stress) occur near 0 = 45 o. Using 
the no adhesion model, the maximum value of all of 
these quantities occurs at 0 = 90 ~ 

Using the methods described by Broutman and 
Panizza [3], the elastic properties of the composite 
can be calculated from the stress analyses. Figs 7 and 8 
show the calculated composite modulus and Poisson's 
ratio, respectively, as a function of inclusion modulus. 
The predicted elastic properties of the composite are 
nearly the same for both adhesion models until the 
modulus of the inclusion approaches or surpasses the 
modulus of the matrix. This means that the composite 
elastic properties (of rubber-modified thermoplastics) 
are insensitive to theAegree of adhesion between the 
matrix and inclusion. 

Let us now consider the effect of increasing rubber 
content on the properties of an impact-modified poly- 
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Figure 11 Composite yield strengt h as a function of rubber content 
for Ultem-Viton blends. (--) FEM, (A) experimental data. 
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Figure 10 Composite modulus as a function of rubber content for 
Ultem-Viton blends. (--) FEM, (A) experimental data. 

mer. These analyses will be compared with the experi- 
mental results of Furno and Nauman [15]. Blends of 
Ultem, a high-temperature thermoplastic (polyether- 
imide), with Viton, a heat-resistant fluoroelastomer, 
were produced by the process of compositional quen- 
ching. This process formed a dispersion of relatively 
uniform-sized spherical rubber particles of approxim- 
ately 0.3 p.m diameter. Blends containing 5, 10, and 
15% by weight of Viton were produced. The elastic 
properties of Ultem and Viton are as follows 

Ultem: E = 1.716x 10 s p.s.i. 

v = 0.35 

Viton: E = 1 . 0 x l 0  sp.s.i. 

v = 0.48 

Fig. 9 shows the interfacial stress intensity factor for 
the matrix as a function of position about the rubber 
particle for 5, 10, and 15% rubber volume fractions. 
An increase in rubber content causes an increase in 
stress magnification at the equator of the particle. 
Consequently, a lower applied stress is necessary to 
activate energy absorbing deformation processes in 
higher rubber content composites. This, in part, ex- 
plains the increases in impact toughness found by 
Furno and Nauman [15] with increasing Viton con- 
tent, because a larger volume of material would be 
experiencing a stress state sufficient to initiate a defor- 
mation process such as shear yielding. Fig. 10 corn- 

pares the predicted blend modulus with the measured 
modulus of Ultem-Viton blends. The agreement be- 
tween prediction and experiment is quite good. The 
predictive curves are based on the perfect adhesion 
assumption but are nearly identical to those found 
using the no adhesion assumption. Finally, Fig. 11 
shows the predicted yield strength of Ultem-Viton 
blends as a function of rubber content. The results are 
compared with the experimental findings of Furno 
and Nauman [15]. The agreement is excellent. The 
matrix cross-section which first begins to yield is 
located approximately half the distance between the 
particle equator and the top of the particle. These 
results are consistent with experimental observation 
that shear bands originate at the particle surface 
approximately 45 o from the particle equator [ l] .  

4. Conclusions 
A method for calculating the internal stresses in an 
elastic media that contains non-bonded spherical elas- 
tic inclusions is discussed. The numerical analysis used 
here accounts for interactions between particles unlike 
the pioneering work done by Goodier [2] but similar 
to the work done by Broutman and Panizza [3]. The 
use of a non-bonded inclusion in this model is in 
contrast to the work of many others [2-8] which 
assumed that perfect adhesion (continuity of displace- 
ment) exists between the particle and matrix. By con- 
sidering both the no adhesion and perfect adhesion 
assumptions, we have established bounds on the real 
interracial behaviour of the composite material. 

For  rubber-modified thermoplastics the stress state 
of the matrix when placed in tension is virtually 
independent of the adhesion between the matrix and 
inclusion. Thus, rubber inclusions are effective initi- 
ators of energy-absorbing deformation processes such 
as crazing and shear yielding, regardless of their de- 
gree of bonding to the matrix. These activated defor- 
mation processes are responsible for the enhancement 
in toughness observed under impact conditions. 
Whether the rubber particles increase the impact 
strength of a material due to initiating deformation 
processes depends on other factors related to the 
fracture mechanics of the composite. Specifically, the 
particles must not create a flaw of critical size such 
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that premature fracture instead of widespread de- 
formation occurs. Flaws are present at the 
particle matrix interface due to imperfect bonding. A 
completely non-bonded particle could result in a flaw 
of size equal to one-half the circumference of the 
particle. For polymers that deform primarily by shear 
yielding, such as nylon and Ultem, rubber particles 
below a certain size (for a given volume fraction of 
modifier) should be effective at increasing impact 
toughness since they would act as deformation initi- 
ators without providing critical flaws. This is con- 
sistent with Wu's [9] contention that shear yielding 
materials can be effectively impact-modified by rubber 
particles that are within some critical interparticle 
distance from one another. For materials that are 
impact-modified primarily through the action of craz- 
ing, the situation is more complicated. Although small 
non-bonded rubber particles may be effective initi- 
ators of crazes, they would be ineffective at termin- 
ating crazes as previously suggested by Bucknall [1] 
and thus cause critical flaws to be created as crazes 
propagate about particles. It would thus be expected 
that an optimum particle size range would exist for 
modifying crazing polymers which qualitatively would 
be particles large enough to terminate crazes and 
small enough so as to avoid providing critical flaws at 
the particle-matrix interface. In addition, the particles 
must be close enough so that the crazes formed be- 
tween the particles are not larger than the critical flaw 
size. It would also be expected that interfacial adhe- 
sion plays a much larger role in composites that 
deform via crazing rather than shear yielding because 
a craze would propagate around the surfaces of poorly 
bonded particles. 

The no adhesion assumption leads to some differ- 
ences from the perfect adhesion assumption in predic- 
ted internal stresses. When the inclusion modulus 
exceeds the modulus of the matrix, the stress state of 
both the matrix and the inclusion are quite different 
depending on the interface assumption used. This 
leads to differences in calculated elastic properties 
such as the modulus and Poisson's ratio. These differ- 
ences become significant when there is a large modu- 
lus mismatch between the two phases. Thus it is 
important to consider the interfacial condition of 
some modified materials such as filled ceramics or 
rubbers. 

Although the two extremes in interfacial bonding 
have no impact on the calculated internal stresses of 
the matrix for rubber-modified polymers, the stresses 
within the rubber particle are quite different for the 
two situations. Because the elastic properties of the 
composite are primarily due to the behaviour of the 
matrix phase, the predicted elastic properties are  es- 

sentially the same for the two interracial conditions 
despite the differences in the particle stress state. 

The finite element stress analysis provides an ex- 
cellent means for predicting the elastic properties of a 
composite material. Only the volume fraction of modi- 
fier in the composite and not particle size is needed for 
the analysis. This is consistent with the observation 
that elastic properties, in contrast to impact proper- 
ties, are relatively insensitive to differences in particle 
size [19]. Using the method described by Broutman 
and Panizza [3], the modulus calculated for 
Ultem-Viton blends containing various amounts of 
modifier is in excellent agreement with the experi- 
mental measurements of Furno and Nauman [15]. In 
addition, a method is proposed to calculate the yield 
strength of a rubber-modified polymer from the stress 
state of the composite. The agreement between predic- 
tion and experiment is again excellent. 
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